Ray Receiver: Difference between revisions

From the Dyson Sphere Program Wiki
imported>76561198346650526
(→‎Summary: added math for the ray receiving efficiency for 100% continuous receiving + example calculations)
imported>76561198045853337
No edit summary
Line 20: Line 20:
The current max receiving efficiency can be calculated as follows:
The current max receiving efficiency can be calculated as follows:


100 - 70 * 0.9^small_upgrade_count * 0.85^big_upgrade_count
<code>100 - 70 * 0.9^small_upgrade_count * 0.85^big_upgrade_count</code>


The upgrades give 10% more efficiency for the first 6 upgrades (small upgrades) and 15% more efficiency for the last two upgrades (big upgrades).
The upgrades give 10% more efficiency for the first 6 upgrades (small upgrades) and 15% more efficiency for the last two upgrades (big upgrades).
Line 27: Line 27:
Continuous receiving increases actual ray receiving efficiency even further. Although for the values between 0% and 100% the math is very complicated, for 100% Continuous receiving it simplifies to:
Continuous receiving increases actual ray receiving efficiency even further. Although for the values between 0% and 100% the math is very complicated, for 100% Continuous receiving it simplifies to:


100 - 0.6 * solar ray basic energy dissipation
<code>100 - 0.6 * solar ray basic energy dissipation</code>


where solar ray basic energy dissipation is (100 - max receiving efficiency) calculated above. It is also directly visible in the "Current upgrade data" in game
where solar ray basic energy dissipation is (100 - max receiving efficiency) calculated above. It is also directly visible in the "Current upgrade data" in game
Line 34: Line 34:
Example for the Ray transmission efficiency level 10:
Example for the Ray transmission efficiency level 10:


* max receiving efficiency 100 - 70 * 0.9^6 * 0.85^4 = '''80.58%'''
* max receiving efficiency: <code>100 - 70 * 0.9^6 * 0.85^4 = '''80.58%'''</code>
* solar ray basic energy dissipation 100 - max receiving efficiency = 19.42%
* solar ray basic energy dissipation: <code>100 - max receiving efficiency = 19.42%</code>
* actual ray receiving efficiency for the ray receiver with '''100%''' continuous receiving 100 - 0.6 * 19.42 = '''88.35%'''
* actual ray receiving efficiency for the ray receiver with '''100%''' continuous receiving: <code>100 - 0.6 * 19.42 = '''88.35%'''</code>




Line 42: Line 42:
The actual power draw on the [[Dyson Sphere]] can be calculated as such:
The actual power draw on the [[Dyson Sphere]] can be calculated as such:


dyson_sphere_draw = (energy_output * 100) / ray_receiving_efficiency
<code>dyson_sphere_draw = (energy_output * 100) / ray_receiving_efficiency</code>


For example, with a ray receiving efficiency of 75%, the power draw on the [[Dyson Sphere]] would be 16.6 MW at 100% "continuous receiving".
For example, with a ray receiving efficiency of 75%, the power draw on the [[Dyson Sphere]] would be 16.6 MW at 100% "continuous receiving".

Revision as of 13:43, 15 March 2021

Ray Receiver
Power Facility
Receiving high-energy rays transmitted from the Dyson Swarm or Dyson Sphere, the received energy can be directly output to the grid or stored as photons in a critical state.
Icon Ray Receiver.png
Energy TypeIon Current
Power6.0 MW
Made InAssembler
Hand-MakeReplicator
Stack Size20

Icon Ray Receiver.png
1
8 s
Icon Steel.png
20
Icon High-Purity Silicon.png
20
Icon Photon Combiner.png
10
Icon Processor.png
5
Icon Super-Magnetic Ring.png
20

Summary

The Ray Receiver is a building used to collect power generated by a Dyson Sphere/Swarm. The longer they are continuously in view of the swarm, the more efficient they become.

Initially, the Ray Receiver produces 5 MW and has a ray receiving efficiency of 30%. While continously receiving energy, the energy production increases to 12.5 MW and 42% ray receiving efficiency at 100% "Continuous receiving".

Note: The technology Planetary Ionosphere Utilization reduces the line-of-sight barrier to maintaining a continuous connection, presumably by bouncing the energy beams off of the planet's Ionosphere to reach the receiver wherever it may be. This is, in effect, the same way that Radio waves can travel over the horizon, on real-world Earth. For this to work, the planet must have an atmosphere, and the Ray Receiver must be supplied with a Graviton Lens. This does not completely remove the line-of-sight requirement, as there is still a dead spot on some planets. The size of the dead spot appears to depend on the distance of the planet to the star.

Inserting a Graviton Lens doubles the power conversion of the Ray Receiver. With a Graviton Lens it produces 25 MW and requests more power from the Dyson Sphere accordingly. The Graviton Lens will be consumed at a rate of 0.25 Graviton Lenses per minute.

After researching Dirac Inversion Mechanism the Ray Receiver can be put in an alternative "Photon" mode where it produces Critical Photons. The Ray Receiver produces 5 Critical Photons per minute while consuming 62.5 MW. When supplied with a Graviton Lens the Ray Receiver produces 10 Critical Photons per minute and consumes 125 MW.


The ray receiving efficiency can be increased with the Ray Transmission Efficiency Upgrade. The upgrades stack multiplicatively. The current max receiving efficiency can be calculated as follows:

100 - 70 * 0.9^small_upgrade_count * 0.85^big_upgrade_count

The upgrades give 10% more efficiency for the first 6 upgrades (small upgrades) and 15% more efficiency for the last two upgrades (big upgrades).


Continuous receiving increases actual ray receiving efficiency even further. Although for the values between 0% and 100% the math is very complicated, for 100% Continuous receiving it simplifies to:

100 - 0.6 * solar ray basic energy dissipation

where solar ray basic energy dissipation is (100 - max receiving efficiency) calculated above. It is also directly visible in the "Current upgrade data" in game


Example for the Ray transmission efficiency level 10:

  • max receiving efficiency: 100 - 70 * 0.9^6 * 0.85^4 = 80.58%
  • solar ray basic energy dissipation: 100 - max receiving efficiency = 19.42%
  • actual ray receiving efficiency for the ray receiver with 100% continuous receiving: 100 - 0.6 * 19.42 = 88.35%


The actual power draw on the Dyson Sphere can be calculated as such:

dyson_sphere_draw = (energy_output * 100) / ray_receiving_efficiency

For example, with a ray receiving efficiency of 75%, the power draw on the Dyson Sphere would be 16.6 MW at 100% "continuous receiving".

Production Chain

Recipe Building Replicator? Technology
Icon Ray Receiver.png
1
8 s
Icon Steel.png
40
Icon High-Purity Silicon.png
20
Icon Photon Combiner.png
10
Icon Processor.png
5
Icon Super-Magnetic Ring.png
20
Icon Assembling Machine Mk.I.pngIcon Assembling Machine Mk.II.pngIcon Assembling Machine Mk.III.pngIcon Re-composing Assembler.png
Tech Ray Receiver.png

Raw Materials

  • Iron Ore = 560
  • Copper Ore = 110
  • Silicon Ore = 40
  • Stone = 120
  • Coal = 40

Player Tips & Tricks

  • On planets with a low axial inclination, place Ray Receivers at their poles for maximum exposure & efficiency. The poles of these planets are always within line of sight to your Dyson Sphere/Swarm.
  • For planets with higher axial inclination, there is no such sweet spot. With the Planetary Ionosphere Utilization Technology, however, the line of sight restriction is removed, and they can be placed anywhere, so long as the planet has an atmosphere and you can keep them stocked with Graviton Lenses.
  • Building Ray Receivers inside a Dyson Sphere, even just a single line row of frames at 0° Orbit Inclination, will cause the efficiency bonus to never degrade. Also works for a Dyson Swarm if you can maintain it.
🍪 We use cookies to keep session information to provide you a better experience.