Dinglebatz (talk | contribs) m (Combustible Unit from 50 to 80 pct) Tag: 2017 source edit |
Kabigonfirst (talk | contribs) (Add Energy Shard toe the list of fuels) Tag: 2017 source edit |
||
Line 85: | Line 85: | ||
|- | |- | ||
|[[File:Icon_Full_Accumulator.png|link=Full_Accumulator]]||50||Power storage<ref name="accumulator">Will return an empty [[Accumulator|accumulator]] when used in the [[Energy Exchanger]] to the building output, and when used in Icarus' Fuel Chamber to the Mecha inventory.</ref>|| data-sort-value="270000" | 270.0 MJ|| data-sort-value="13500000" |13.5 GJ||+100%||[[File:Icon_Energy_Exchanger.png|link=Energy_Exchanger]]||6 s|| 10||12||24||60 | |[[File:Icon_Full_Accumulator.png|link=Full_Accumulator]]||50||Power storage<ref name="accumulator">Will return an empty [[Accumulator|accumulator]] when used in the [[Energy Exchanger]] to the building output, and when used in Icarus' Fuel Chamber to the Mecha inventory.</ref>|| data-sort-value="270000" | 270.0 MJ|| data-sort-value="13500000" |13.5 GJ||+100%||[[File:Icon_Energy_Exchanger.png|link=Energy_Exchanger]]||6 s|| 10||12||24||60 | ||
|- | |||
|[[File:Icon_Energy_Shard.png|link=Energy_Shard]]||100||Material, Chemical<ref>A chemical fuel obtained only from Dark Fog Debris.</ref>|| data-sort-value="3600" | 3.6 MJ|| data-sort-value="360000" |360 MJ||+20%||[[File:Icon_Thermal_Power_Station.png|link=Thermal_Power_Station]]||1.333 s|| 45||8||16||40 | |||
|} | |} | ||
Latest revision as of 19:06, 23 June 2024
Dyson Sphere Program's main focus is power generation; as such, there are a plethora of different ways of generating power in the game, ranging from the humble wind turbine you start with, to fusion generators, artificial stars, and, of course, the Dyson Sphere itself. Some of these generators and your mech, Icarus, run on one or more different fuels. This page lists all fuels in the game and Their stats.
Fuel stats
All fuels have two stats: Energy, and Fuel chamber gen.
Energy is the total energy each item contains. When used in Icarus, the Mini Fusion Power Station and the Artificial Star, this is the total energy it generates. Thermal Power Stations incur a 20% energy loss for all fuels they use.
Fuel chamber gen. marks how quickly Icarus' reactor core converts the fuel. This only changes how fast energy is recharged, not how much total energy is produced. Note that Coal with 0% is the only fuel that matches your Energy Circuit upgrade level. Both positive and negative percentages are relative to this. For instance, both a Hydrogen Fuel Rod and the 5 Hydrogen it requires to produce contain a total of 54MJ, but the fuel rod has a Fuel chamber gen. of +200% instead of the +100% of regular hydrogen, meaning you will use the fuel rod 50% faster (300% total charge rate compared to 200%) than the regular hydrogen and therefore recharge energy 50% faster. The time fuel lasts, and your recovery speed, both depend on your Energy Circuit upgrade level.
The "fuel chamber gen." stat only affects Icarus; it has no effect on Thermal Power Plants.
Burn Time
Burn Time is calculated with the following formula:
(Energy * Efficiency) / Rate == burn time (in seconds)
Energy is the amount of energy stored in the fuel, in Joules.
Efficiency is the conversion efficiency of the generator burning the fuel. For a Thermal Power Station, this is 0.8 (80%).
Rate is the rate at which the generator is supplying power (in Watts) to the grid.
Example: To calculate the burn time of 1 Energetic Graphite in 1 thermal power generator at 100% load:
Energy * Efficiency / Rate == burn time (in seconds) (6.3 MJ * 0.8) / 2.16MW == 2.333 seconds
The table below has been calculated at 100% load for all fuels/generators. Fuel typically takes longer than this to burn in practice, because it is abnormal to keep a power grid at 100% load at all times.
List of Fuels
Fuel | Stack Size | Type | Energy | Energy per stack | Fuel chamber gen. | Generator | Generator Burn Time | Units per minute in generator | Generators per belt | ||
---|---|---|---|---|---|---|---|---|---|---|---|
500 | Natural Resource, Chemical | 500 kJ | 250 MJ | -30% | 0.185 s | 324.32 | 1.11 | 2.22 | 5.55 | ||
100 | Natural Resource, Chemical | 1.50 MJ | 150 MJ | -10% | 0.556 s | 107.91 | 3.34 | 6.67 | 16.68 | ||
100 | Rare Resource, Material, Chemical | 1.80 MJ | 180 MJ | -20% | 0.667 s | 89.96 | 4 | 8 | 20.01 | ||
100 | Natural Resource, Chemical | 2.70 MJ | 270 MJ | 0% | 1 s | 60 | 6 | 12 | 30 | ||
100 | Material, Chemical | 6.75 MJ | 675 MJ | +50% | 2.5 s | 24 | 15 | 30 | 75 | ||
100 | Material, Chemical | 9.72 MJ | 972 MJ | +80% | 3.6 s | 16.67 | 21.6 | 43.2 | 108 | ||
100 | Material, Chemical | 21.6 MJ | 2.16 GJ | + 120% | 8 s | 7.5 | 48 | 96 | 240 | ||
100 | Material, Chemical | 54.0 MJ | 5.4 GJ | +200% | 20 s | 3 | 120 | 240 | 600 | ||
20 | Natural Resource, Chemical | 4.05 MJ | 81 MJ | +20% | 1.5 s | 40 | 9 | 18 | 45 | ||
20 | Material, Chemical | 4.50 MJ | 90 MJ | +30% | 1.67 s | 36 | 10 | 20 | 50 | ||
20 | Rare Resource, Material, Chemical | 9.00 MJ | 180 MJ | +100% | 3.33 s | 18 | 20 | 40 | 100 | ||
20 | Rare Resource, Material, Chemical | 9.00 MJ | 180 MJ | +100% | 3.33 s | 18 | 20 | 40 | 100 | ||
100 | Material, Chemical | 900 kJ | 90 MJ | -50% | 0.333 s | 180.18 | 2 | 4 | 9.99 | ||
100 | Material, Chemical | 96.0 kJ | 9.6 MJ | -70% | 0.036 s | 1666.67 | 0.22 | 0.43 | 1.08 | ||
100 | Material, Chemical | 84.0 kJ | 8.4 MJ | -80% | 0.031 s | 1935.48 | 0.19 | 0.37 | 0.93 | ||
50 | Rare Resource, Chemical | 4.80 MJ | 240 MJ | +40% | 1.778 s | 33.75 | 10.67 | 21.33 | 53.33 | ||
30 | End Product, Chemical | 54.0 MJ | 1.62 GJ | +200% | 20 s | 3 | 120 | 240 | 600 | ||
30 | End Product, Nuclear Energy | 600 MJ | 18 GJ | +300% | 40 s | 1.5 | 240 | 480 | 1200 | ||
30 | End Product, Mass Energy | 7.20 GJ | 216 GJ | +500% | 100 s | 0.6 | 600 | 1200 | 3000 | ||
50 | End Product, Mass Energy[1] | 72.0 GJ | 3.6 TJ | +1100% | 500 s | 0.12 | 3000 | 6000 | 15000 | ||
50 | Power storage[2] | 270.0 MJ | 13.5 GJ | +100% | 6 s | 10 | 12 | 24 | 60 | ||
100 | Material, Chemical[3] | 3.6 MJ | 360 MJ | +20% | 1.333 s | 45 | 8 | 16 | 40 |
- ↑ Increases the power output of the Artificial Star by 100%.
- ↑ Will return an empty accumulator when used in the Energy Exchanger to the building output, and when used in Icarus' Fuel Chamber to the Mecha inventory.
- ↑ A chemical fuel obtained only from Dark Fog Debris.
Efficient Power Production
The following chapters describe by example the best ways to utilize the different basic fuel resources Coal, Crude Oil, and Fire Ice, taking the power consumption of required buildings like smelters, refineries, sorters etc. into account.
Coal vs. Energetic Graphite
Assumptions
- Four Mining Machines, each covering 6 Coal Veins.
- No Veins Utilization upgrade.
Burning Coal
- Coal production: 24 Veins * 0.5 Coal/s = 12 Coal/s.
- Power Stations needed to burn 12 Coal/s: 12 * 2.7 MJ * 0.8 / 2.16 MW = 12 Stations.
- Power production: 12 Stations * 2.16 MW = 25.92 MW.
- Power consumption:
- Mining Machines: 4 * 420 kW = 1.68 MW.
- Sorters (1 per Station): 12 * 18 kW = 0.216 MW.
- Net power production: 25.92 MW - 1.68 MW - 0.216 MW = 24.024 MW.
Burning Energetic Graphite
- Smelting 12 Coal/s needs 12 Smelters, and results in 6 Graphite/s.
- Power Stations needed to burn 6 Graphite/s: 6 * 6.75 MJ * 0.8 / 2.16 MW = 15 Stations.
- Power production: 15 Stations * 2.16 MW = 32.4 MW.
- Power consumption:
- Mining Machines: 4 * 420 kW = 1.68 MW.
- Smelters: 12 * 360 kW = 4.32 MW.
- Sorters (2 per Smelter, 1 per Station): 39 * 18 kW = 0.702 MW.
- Net power production: 32.4 MW - 1.68 MW - 4.32 MW - 0.702 MW = 25.698 MW.
Burning Combustible Unit
- Smelting 12 Coal/s needs 12 Smelters, and results in 4 Combustible Units/s.
- Power Stations needed to burn 6 Combustible Unit/s: 4 * 9.72 MJ * 0.8 / 2.16 MW = 14.4 Stations.
- Power production: 14.4 Stations * 2.16 MW = 31.104 MW.
- Power consumption:
1. Mining Machines: 4 * 420 kW = 1.68 MW. 2. Smelters: 12 * 360 kW = 4.32 MW. 3. Sorters (2 per Smelter, 1 per Station): 39 * 18 kW = 0.702 MW.
- Net power production: 31.104 MW - 1.68 MW - 4.32 MW - 0.702 MW = 24.402 MW.
Conclusion
The increased effort of smelting Energetic Graphite from Coal results in ~1.7 MW more net power production.
- Coal: 24.024 MW
- Energetic Graphite: 25.698 MW
- Combustible Unit: 24.402 MW.
Crude Oil vs. Refined Oil vs. X-Ray Cracking vs. Hydrogen Fuel Rods
Crude Oil can be converted to Refined Oil and Hydrogen. Using the X-Ray Cracking recipe, this can be converted into Energetic Graphite and Hydrogen. Finally, Hydrogen and Titanium Ingots can be crafted into Hydrogen Fuel Rods.
Energy change from conversion
As for Coal-to-Energetic-Graphite above, we can do some quick math of the energy difference from converting the different stages of fuel to their next possible outcome. Note that for each case, if your system is not perfectly balanced to maximize factory usage, each second spent idle is extra energy lost and the results given are only an upper bound of the best you could get, but you most likely will get less.
- Crude Oil to Refined Oil and Hydrogen for 1 Oil Refinery and extra sorters over 4 seconds: (8MJ + 2 * 4.4MJ) * 0.8 - (2 * 4MJ) * 0.8 - (960kW + 4.1 * 18kW) * 4s = +2.9048MJ or +726.2kW.
- Refined Oil to Hydrogen and Graphite for 1 Oil Refinery and extra sorters over 4 seconds: (8MJ + 6.3MJ) * 0.8 - (4.4MJ) * 0.8 - (960kW + 6.25 * 18 kW) * 4s = +3.63MJ or +907.5kW.
- Hydrogen and Titanium Ore to Hydrogen Fuel Rods for 1 Smelter and 2 Assembling Machines Mk.I and extra sorters over 4 seconds: (50MJ) * 0.8 - (5 * 8MJ) * 0.8 - (2 * 270kW + 360kW + 6.25 * 18kW) * 4s = +3.95MJ or +987.5kW.
Assumptions
- One Crude Oil Seep producing 1.5 Oil/s.
- No Veins Utilization upgrade.
Burning Crude Oil
- Power Stations needed to burn 1.5 Oil/s: 1.5 * 4 MJ * 0.8 / 2.16 MW = 2 Stations.
- Power production: 2 Stations * 2.16 MW = 4.32 MW.
- Power consumption:
- Oil Extractor: 1 * 840 kW = 0.84 MW.
- Sorters (1 per Station): 2 * 18 kW = 0.036 MW.
- Net power production: 4.32 MW - 0.84 MW - 0.036 MW = 3.444 MW.
Burning Refined Oil and Hydrogen
- Refining 1.5 Crude Oil/s needs 3 Oil Refineries, and results in 1.5 Refined Oil/s and 0.75 Hydrogen/s.
- Power Stations needed to burn 1.5 Refined Oil/s: 1.5 * 4.4 MJ * 0.8 / 2.16 MW = 2 Stations.
- Power Stations needed to burn 0.75 Hydrogen/s: 0.75 * 8 MJ * 0.8 / 2.16 MW = 2 Stations.
- Power production: 4 Stations * 2.16 MW = 8.64 MW.
- Power consumption:
- Oil Extractor: 1 * 840 kW = 0.84 MW.
- Oil Refineries: 3 * 960 kW = 2.88 MW.
- Sorters (3 per Refinery, 1 per Station): 13 * 18 kW = 0.234 MW.
- Net power production: 8.64 MW - 0.84 MW - 2.88 MW - 0.234 MW = 4.686 MW.
Burning Energetic Graphite and Hydrogen (X-Ray Cracking)
- Cracking 1.5 Refined Oil/s needs 6 Oil Refineries, and results in 1.5 Graphite/s and 1.5 extra Hydrogen/s (2.25 Hydrogen/s in total).
- Power Stations needed to burn 1.5 Graphite/s: 1.5 * 6.3 MJ * 0.8 / 2.16 MW = 3 Stations.
- Power Stations needed to burn 2.25 Hydrogen/s: 2.25 * 8 MJ * 0.8 / 2.16 MW = 6 Stations.
- Power production: 9 Stations * 2.16 MW = 19.44 MW.
- Power consumption:
- Oil Extractor: 1 * 840 kW = 0.84 MW.
- Oil Refineries: 9 * 960 kW = 8.64 MW.
- Sorters (3 per Refined Oil, 4 per X-Ray, 1 per Station): 42 * 18 kW = 0.756 MW.
- Net power production: 19.44 MW - 0.84 MW - 8.64 MW - 0.756 MW = 9.204 MW.
Burning Energetic Graphite and Hydrogen Fuel Rods (With X-Ray Cracking)
- Crafting Hydrogen Fuel Rods from 2.25 Hydrogen/s needs 2 Assemblers, and results in 0.45 Fuel Rods/s (5 Hydrogen per Fuel Rod).
- Smelting the required 0.45 Titanium Ingots/s for the Fuel Rods needs 1 Smelter (max. output 0.5 ingots/s). It consumes 0.9 Titanium Ore/s which can be mined by 1 Mining Machine covering 2 Titanium Ore Veins.
- Power Stations needed to burn 1.5 Graphite/s: 1.5 * 6.3 MJ * 0.8 / 2.16 MW = 3 Stations.
- Power Stations needed to burn 0.45 Fuel Rods/s: 0.45 * 50 MJ * 0.8 / 2.16 MW = 8 Stations.
- Power production: 11 Stations * 2.16 MW = 23.76 MW.
- Power consumption:
- Oil Extractor: 1 * 840 kW = 0.84 MW.
- Oil Refineries: 9 * 960 kW = 8.64 MW.
- Mining Machines: 1 * 420 kW = 0.42 MW.
- Smelters: 1 * 360 kW = 0.36 MW.
- Assemblers: 2 * 270 kW = 0.54 MW.
- Sorters (3 per Refined Oil, 4 per X-Ray, 2 per Smelter, 3 per Assembler, 1 per Station): 52 * 18 kW = 0.936 MW.
- Net power production: 23.76 MW - 0.84 MW - 8.64 MW - 0.42 MW - 0.36 MW - 0.54 MW - 0.936 MW = 12.024 MW.
Conclusion
Each step in the production chain increases the net power production.
- Crude Oil: 3.444 MW.
- Refined Oil: 4.686 MW.
- X-Ray Cracking: 9.204 MW.
- Hydrogen Fuel Rods: 12.024 MW.
Fire Ice vs. Hydrogen vs. Hydrogen Fuel Rods
Fire Ice could be converted to Hydrogen or Hydrogen Fuel Rods.
Energy change from conversion
- Fire Ice to Hydrogen and Graphene for 1 Chemical Plant and extra sorters without burning the graphene over 2 seconds: (8MJ) * 0.8 - (2 * 4.8MJ) * 0.8 - (720kW + 2.42 * 18kW) * 2s = -2.807MJ or -1.404MW.
- Fire Ice to Hydrogen and Graphene for 1 Chemical Plant and extra sorters when burning the graphene over 2 seconds: (8MJ + 2 * 96kW) * 0.8 - (2 * 4.8MJ) * 0.8 - (720kW + 2.42 * 18kW) * 2s = -2.730MJ or -1.365MW.
- Hydrogen and Titanium Ore to Hydrogen Fuel Rods: check the line above made for the crude oil section.
Assumptions
- Four Mining Machines, each covering 6 Fire Ice Veins.
- No Veins Utilization upgrade.
Burning Fire Ice
- Fire Ice production: 24 Veins * 0.5 Fire Ice/s = 12 Fire Ice/s.
- Power Stations needed to burn 12 Fire Ice/s: 12 * 4.8 MJ * 0.8 / 2.16 MW = 21 Stations.
- Power production: 21 Stations * 2.16 MW = 45.36 MW.
- Power consumption:
- Mining Machines: 4 * 420 kW = 1.68 MW.
- Sorters (1 per Station): 21 * 18 kW = 0.378 MW.
- Net power production: 45.36 MW - 1.68 MW - 0.378 MW = 43.302 MW.
Burning Hydrogen
2 Fire Ice (9.6 MJ) can be converted to 1 Hydrogen (8 MJ) and 2 Graphene (0.192 MJ) which is already a loss of energy without taking any buildings into account.
Burning Hydrogen Fuel Rods
- Crafting Hydrogen from 12 Fire Ice/s needs 12 Chemical Plants, and results in 6 Hydrogen/s and 12 Graphene/s.
- Crafting Hydrogen Fuel Rods from 6 Hydrogen/s results in 1.2 Fuel Rods/s and 12 Graphene/s.
- Power Stations needed to burn 1.2 Fuel Rods/s: 1.2 * 50 MJ * 0.8 / 2.16 MW = 22 Stations (one more than needed for burning Fire Ice).
- The produced Graphene cannot satisfy a single Power Station: 12 * 0.096 MJ * 0.8 / 2.16 MW = (exactly) 0.43 Stations.
- The 1.43 extra Power Stations produce 3.08 MW more power, compared to burning Fire Ice directly.
- The 12 Chemical Plants needed to produce Hydrogen already consume 12 * 720 kW = 8.64 MW.
Conclusion
Burning Fire Ice directly in the Thermal Power Station is more efficient than converting it to Hydrogen or Hydrogen Fuel Rods. Unless you need extra graphene from Fire Ice, this is highly discouraged.