Orbital Collector

From the Dyson Sphere Program Wiki
Revision as of 01:18, 4 November 2022 by imported>76561198026754409
Orbital Collector
Logistics
Used to collect the resources of Gas giant, it needs to consume the collected fuel materials to maintain the energy required to work in orbit.
Icon Orbital Collector.png
Gathering TargetGas Giant
Work Consumption30.0 MW
Gathering Speed8 * Mining speed * GG base - Cons.
Made InAssembler
Hand-MakeReplicator
Stack Size10

Icon Orbital Collector.png
1
30 s
Icon Interstellar Logistics Station.png
1
Icon Super-Magnetic Ring.png
50
Icon Reinforced Thruster.png
20
Icon Full Accumulator.png
20

Summary

Generates Hydrogen and Deuterium when placed on the equator of a Gas Giant, or Hydrogen and Fire Ice on the equator of an Ice Giant.

The resource collection rate depends on the base yield of the Giant and the Gathering speed of the Orbital Collector. The default Gathering speed is x8. Gathering speed can be increased with the Veins Utilization upgrade. The actual collection rate is calculated as base Giant yield * Gathering speed.

However, some of the collected resources will be used to power the Orbital Collector, which lowers (sometimes drastically) the amount of resources that are actually produced. The resources are used proportionally to how much is collected per second (regardless of how much of each resource is stored), and to energy values of the resources (see below for more info).

Production Chain

Recipe Building Replicator? Technology
Icon Orbital Collector.png
1
30 s
Icon Interstellar Logistics Station.png
1
Icon Super-Magnetic Ring.png
50
Icon Reinforced Thruster.png
20
Icon Full Accumulator.png
20
Icon Assembling Machine Mk.I.pngIcon Assembling Machine Mk.II.pngIcon Assembling Machine Mk.III.pngIcon Re-composing Assembler.png
Tech Gas Giants Exploitation.png

Player Tips & Tricks

It is possible to place more than one collector on a Gas Giant, although there is a minimum distance between collectors required. Placing them at the minimal possible distance will let you place a maximum of 40 collectors.

In order to export products from an orbital collector, set to the collector to "remote supply." Then on the planet where you wish to receive the collected products, set up an Interstellar Logistics Station with fire ice, hydrogen, and/or deuterium set to "remote demand."


Since the consumption values are dependent only on fuel types and the ratio of their base production (since they scale equally with VU), for a given Giant the absolute loss of resources per Collector is constant. As a result, with low Mining speeds giants with low base production rate will lose most of the production as upkeep. In such cases, researching first couple of levels of Veins Utilization is crucial in making the Collectors profitable at all.

E.g.: Assume a giant with base yield of 0.5 Fire Ice/s and 0.25 Hydrogen/s and base Mining speed (100%) giving Gathering speed = x8, and later upgraded to VU Lvl 5, i.e. Mining speed 150% (giving Gathering speed = 8 * 1.5 = 12x). Increasing Mining speed from 100% to 150% (VU from 0 to 5) increases both FI and H production by about 3.5 times (about +250% instead of +50% effect it had on miners etc.). In this case, even two first levels of VU (giving only +20% to most mining machines) basically double the Collector's output. This effect gets much less pronounced on higher VUs or on Giants with high base rates, though. The raw (before consumption) and real (after consumption) resource yields can be calculated as follows: (the calculation for other VU/MS values is left as an exercise for the curious reader)

Gas Giant base Power values of resources Total of power values Fraction of total power Orbital Collector consumption Raw prod. with MS 100% Real prod. with MS 100% Raw prod. with MS 150% Real prod. with MS 150%
0.5 Fire Ice/s 4.8 MJ/FI * 0.5 FI/s = 2.4 MW 2.4 MW + 2.25 MW = 4.65 MW 2.4 MW / 4.65 MW = ~0.52 30 MW * 0.52 / 4.8 MJ/FI = 3.25 FI/s 0.5 FI/s * (8 * 1) = 4 FI/s 4 FI/s - 3.25 FI/s = 0.75 FI/s 0.5 FI/s * (8 * 1.5) = 6 FI/s 6 FI/s - 3.25 FI/s = 2.75 FI/s
0.25 Hydrogen/s 9 MJ/H * 0.25 H/s = 2.25 MW 2.25 MW / 4.65 MW = ~0.48 30 MW * 0.48 / 9 MJ/H = 1.6 H/s 0.25 H/s * (8 * 1) = 2 H/s 2 H/s - 1.6 H/s = 0.4 H/s 0.25 H/s * (8 * 1.5) = 3 H/s 3 H/s - 1.6 H/s = 1.4 H/s
🍪 We use cookies to keep session information to provide you a better experience.